

Traceable humidity measurements in the pharmaceutical industry

Workshop: Improved measurement standards for humidity at high temperatures: impact on the industry

INRIM, Torino, Italy, 12th July 2018 Richard Högström, VTT MIKES, Finland

Contents

- Needs of pharmaceutical industry
- Challenges in current practice
- Developments within HIT project
 - Dynamic calibration procedures
 - Calibrators
- Conclusion

Contributors

Richard Högström Juho Salminen Martti Heinonen

Shahin Tabandeh

Case: Orion

- Orion Oyj is a globally operating Finnish pharmaceutical company (listed on Nasdaq Helsinki)
- In the EMPIR HIT project improved humidity calibration methods were developed for pharmaceutical industry in collaboration with Orion

Needs of pharmaceutical industry

- Stringent quality standards for monitoring environmental conditions (e.g. relative humidity) in test chambers and at manufacturing sites
- Industry needs cost-effective calibration procedures, preferably on-site methods to minimize down time due to calibration

Challenges in current industry practice

http://www.directindustry.com/prod/voetsch-industrietechnik/product-16219-424389.html

https://www.otm.sq/humidity-measurement-instruments.html#.W0QzW8cl.lnl.lQ

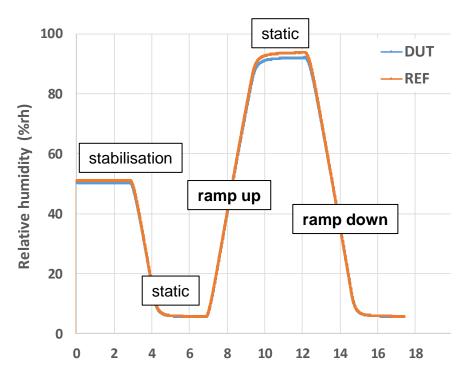
- Calibrations are performed at static conditions:
 - Time consuming, i.e. expensive
 - Costs limit the number of measurement points
 - → representativeness of results?
 - Hysteresis often significant but not included
 - In many cases RH probes are used at nonstatic conditions
- On-site calibration methods:
 - Salt solutions: low cost, but labourous and limited (static) calibration points
 - Calibrators: more flexible, but expensive

7

Developments in HIT project

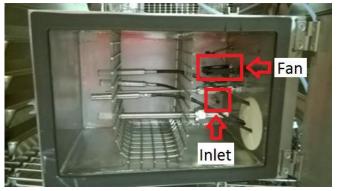
Target: Development of an efficient but comprehensive calibration procedure based on measurements at non-static conditions

- In-laboratory calibrations
 - Calibrator for non-static calibrations
- On-site calibrations
 - Humidity calibrators for fast nonstatic calibrations on-site



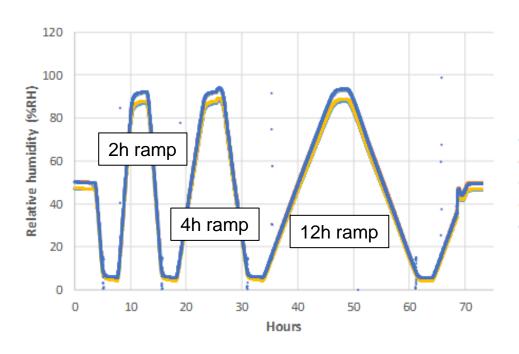
Non-static calibration procedure

- Fast
- Coverage over full humidity range
- Hysteresis is included



In-laboratory calibrations: A new modular humidity calibration setup

- Humidity is generated by mixing dry and humid air using mass flow controllers
- Heater in the humidifier to compensate for evaporative cooling
- Quick couplings for easy assembling
- Fully automated (computer control)

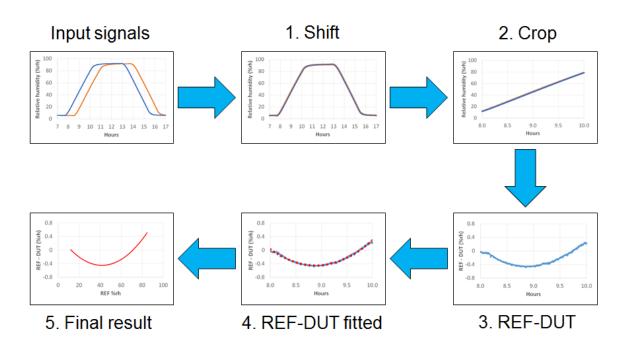


Non-static calibration procedure

- Study of measurement scheme:
 - Influence of ramp speed?
 - Comparability to static calibration?

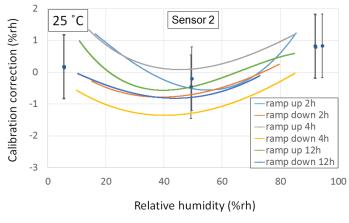
Sensor 1 Sensor 2

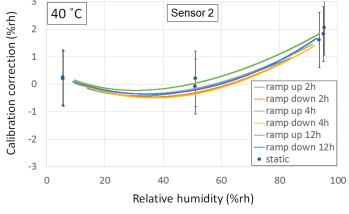
Sensor 3

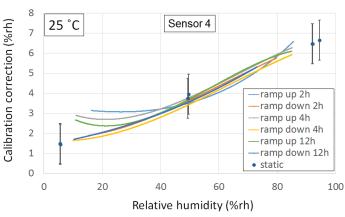

Sensor 4

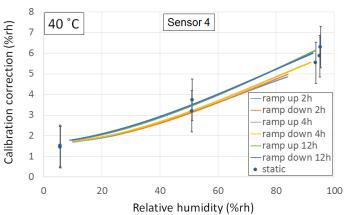
MBW 373 LHX

Signal processing scheme

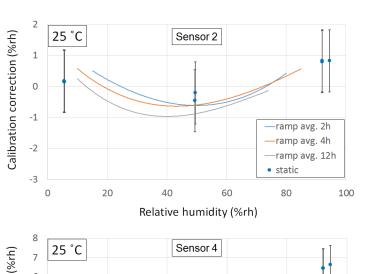



- Delay compensation different time constants cause shift in signal
- 2. Linear part of ramp selected
- Calibration correction calculated (REF-DUT)
- 4. Fitting of REF-DUT data
- Results presented as calibration correction curve as function of relative humidity

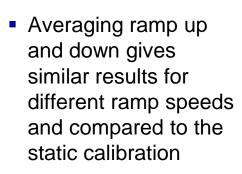


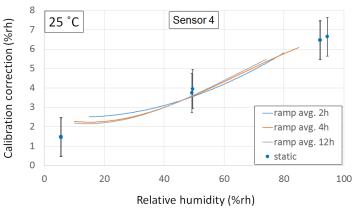


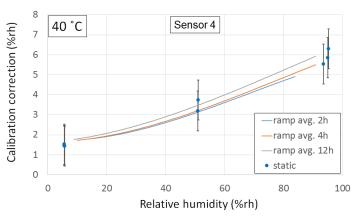
Non-static calibration results 1/2

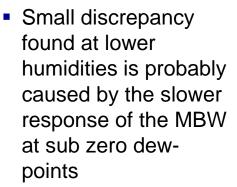


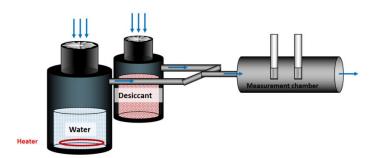

- Non-static calibration results match fairly well with static calibration
- Hysteresis larger at 25 °C and for 2h and 4h ramps compared to 12h ramps
- At 25 °C and lower humidities (20 %rh and below) small discrepancies found (Note: T_d = 0 °C at 20 %rh and 25 °C)





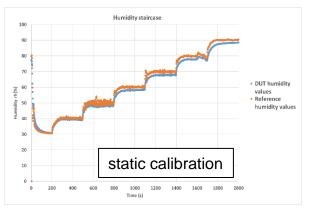

Non-static calibration results 2/2




HIT

On-site calibrations: Humidity calibration for non-static calibrations

- Humidity is generated by mixing dry and humid air using voltage controlled fans
- Calibration is based on comparison against a reference sensor (traceably calibrated elsewhere)


- Fully automated calibration
 - → Demonstrations at Orion

Demonstration at Orion

Feedback:

- Connectivity of factory measurement system prevents the use of a dynamic calibration approach
- Even in static operation, 30 % to 50 % reduction in overall calibration time is expected
- If temperature calibration option is added, the reduction is expected to be even larger

Conclusion

- Non-static calibration procedure has a potential of decreasing the calibration time by up to 50 %
- Time constants of sensors varies significantly → validation against static calibration is necessary
- Use of chilled mirror hygrometer as a reference is challenging
- Our design with flow control using fans provides a simple and cost-effective approach for a field humidity calibrator

Challenges in current industry practice

- Calibrations are performed at static conditions:
 - Time consuming, i.e. expensive
 - Limited number of measurement points → representativeness of results?
 - Hysteresis often significant but not included
 - In many cases RH probes are used at nonstatic conditions
- On-site calibration methods:

Salt solution	Calibrators
+ low cost	+ flexible
laborouslimited (static)calibration points	expensivestatic calibrations

