

EMPIR HIT Workshop

Need for reliable humidity measurements in harsh conditions

Humidity Measurement in Harsh Conditions

Common Objectives

– Common Requirements

Example Applications

calibration

Common Objectives

- Improve product quality
 - Production consistency
 - Less defects
- Increase yield
 - Less waste of raw materials
- Optimised processes
 - Time
- Improving efficiency
 - Energy and emissions

MBW

calibration

Common Requirements

- Improved measurement performance
 - Performance at working condition
 - Unknown specification at elevated temperatures
 - Calibration at elevated temperatures
 - Adjustment/calibration typically at room temperature
 - Limited availability above 70 °C
 - High cost
 - Rarely applied
 - Speed of response
 - Thermal characteristics
 - Sampling system effects
 - Recovery from condensation events

MBW

calibration

Common Requirements

- Lower cost of measurement
 - Precise solutions exist (e.g. Dew Point Mirrors)
 - High capital cost
 - Operational practicalities
 - Correct instrument selection
 - Do users really assess all the options?
 - Where to go for independent advice?

calibration

Common Requirements

- Reduced Maintenance
 - Minimising application related effects •
 - Contamination
 - Particulate
 - Chemical _
 - Calibration
 - Impractical at most installation sites
 - Expectation is to 'fit and forget'

Example Applications

Pasta Drying

- Bulk production on a large scale
- HT and VHT processes
- 60...120°C, 10..20 %rh

calibration

Textile Drying

- Production dryers
- Large commercial laundry dryers
- 80...130 °C, 95...5 %rh

 Imagine the saving if the efficiency every textile dryer was improved?

Ceramic Drying

- Reduction of water content prior to firing
- Generally a batch process
- Usually temperature and time controlled
- Humidity measurement and control improves product consistency

Brick Drying

- Batch or tunnel dryer
- Reduce water content of clay prior to kiln firing
- Poor control can lead to water pockets
- Expansion in the kiln cause mechanical failure of bricks
- 80...130 °C, 85...5 %rh
- Contaminated air
- Sulphur from some clay
- Acidic degradation of sensors

c alibration

MBW

Bakery

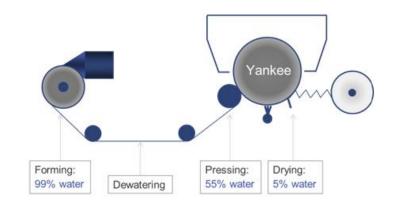
- Baking ovens
 - 150...220 °C
 - Humidity control for crust thickness and different finishes
 - Lower humidity produces a thicker crust
- Provers
 - 35...45 °C, 65...90 %rh
 - Contamination effects
 - Measurement performance

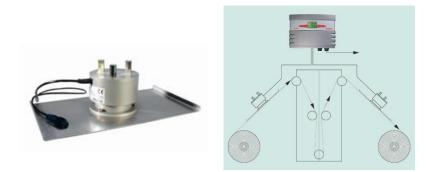
calibration

MBW

Wood Dryers

- Kiln drying
- 50...100 °C
- Contaminated exhaust air
- High maintenance requirement





© MBW Calibration, Robin Farley

Drying Paper

- High energy consumption
- Fast process
- Slow measurement
- Difficult to control

calibration

Electronic Product Environmental Test

- Test conditions:
 - -40...180 °C
 - 85 °C / 85 %rh
 - Salt fog
 - 100 °C, condensing
 - Transient conditions

Standards

- IEC 60068-2
 - Environmental Testing
- Accelerated Stress Tests (AST)
 - HALT Highly Accelerated Life Test
 - HASS(T) Highly Accelerated
 Stress Screening (Testing)
- MIL-STD-202 and 810
 - US Department of Defence
 - Electronic & Electrical Component
 Testing Standards

calibration

Pharmaceutical Development

- ASAP Accelerated Stability Assessment Programme
 - Developing application
 - Early stage drug formulation studies
 - 60...90 °C, 10...75 %rh
 - Current challenge is the validation of performance at working conditions....

	-	
· ·		
*		
		Margaret-
		-

Conditions		Time points
T (°C)	%RH	days
50	75	3-7-14
60	50	3-7-14
70	10	3-7-14
70	75	1-3-7-14
80	50	1-3-7-14

calibration

On Line aW(ERH) Measurement

- Potential Applications
 - Paper
 - Textiles
 - Carpets
 - Pharmaceuticals
 - Animal feeds

- Issues
 - Speed of response
 - Temperature effects
 - Contamination of measurement device

calibration

Motivation for Measurement Implementation

– For

- Product quality
- Energy saving
- Improved quality
- Process times

- Against

- Energy costs too low!
- Implementation complexity
- Maintenance
- Understanding of humidity/moisture

calibration