

Transient humidity measurements in sterile storage of pharmaceuticals

Slaven Ranogajec

Domen Hudoklin Gaber Begeš

University of Ljubljana Faculty of Electrical Engineering Departments of Measurements and Robotics

University of Ljubljana Faculty of Electrical Engineering Departments of Measurements and Robotic

Microbial growth

- sterile process in Lek d.d. (part of Sandoz / Novartis)
- microbiological quality control of water samples
- samples prepared at room conditions (R2A agar)
- stacked Petri dishes (PDs), typically in batches of 6
- temperature of incubator: 30°C to 35°C
- time of incubation: 5 to 7 days or longer at 20°C to 28 °C, or at lest 5 days at 30°C to 35°C

Univerza v Ljubljani Fakulteta za elektrotehnik Kasedra za enerienia in re

University of Ljubijana Faculty of Electrical Engineering Departments of Measurements and Robotis

Microbial growth

- inside PDs high accumulation of water vapor (high humidity)
- condensation forming (on the inside) after 2 to 3 days (transient)
- not in all PDs in the stack

Univerza v Ljubljani Fakulteta za elektrotebnik Kasedra za merjenia in ro

University of Ljubljana Faculty of Electrical Engineering Departments of Measurements and Robotic

Condensation issue

- the source of water vapor inside agar same effect as with sterile purified water (SPW) (initial suspect was also microbial growth process)
- potential causes of condesation:
 - temperature of incubation (storage)
 - humidity of incubation (tightness of the PD cover)
 - endothermic / exothermic growth process
 - evaporative cooling
 - thermal conductivity between PDs in a stack
 - cold spots
 - temperature shocks

University of Linbliana Faculty of Electrical Engineering Departments of Measurements and Robotic

Measurement setup

 initially measured T&RH on top, in the middle and at the bottom of the stack (small T&RH loggers used) – switched positions

Univerza v Ljubljoni Fakulteta za elektrotebu Katedra za merjenja ju

University of Ljubijana Faculty of Electrical Engineering Department of Measurements and Robotics

Measurement setup

- because of their size and mass, the stacks had to be split top and bottom half three PDs
- deviation from real conditions heat conduction between PDs, convection (in the split space), mass of the logger
- smaller calibrated thermistors were used instead (uncertainty below 0,01 °C; differential measurement - profile))

Univerza v Ljubljani Fakultota za elektrotehni Kasedra za merjenis in re

University of Ljubljona Faculty of Electrical Engineering Department of Measurements and Robotics

Measurement setup

- because of their size and mass, the stacks had to be split top and bottom half three PDs
- deviation from real conditions heat conduction between PDs, convection (in the split space), mass of the logger
- smaller calibrated thermistors were used instead (uncertainty below 0,01 °C; differential measurement - profile)
- allows high spatial resolution below 0,1 °C/cm corresponding to less then 1 %rh/cm
- small RH capacitive sensors were used inside the PDs
- outside humidty proved not significant (PDs covers tight enough)

Univerza s Zjubljani Fakulteta za elektroteko Katedra za merimi in

University of Ljubljana Faculty of Electrical Engineering Department of Measurements and Robotic

Temperature profile of the stack

Univerza v Ljubljani Fakulteta za elektrotebniko Katelta za merimis in rehatika

University of Ljubijana Faculty of Electrical Engineering Department of Measurements and Robotics

Temperature profile of the stack

Univerza o Ljubljani Fakulteta za elektrotebniko Kasedra za merienia in robot

University of Ljubljana Faculty of Electrical Engineering Department of Measurements and Robotic

Testing

- the level of condensation corresponded to temperature cold spots
- in collaboration with Lek d.d. (Sandoz/Novartis) the potential parameters that could decrease the condensation were explored
- first, we switched the plastic containers with the mesh basket

effect: 0

- 0 no effect + improved (less cond.)
- ++ very improved

Univerza v Ljubljani Fakulteta za elektroteko Kasedra za merimie in

University of Ljubliana Faculty of Electrical Engineering Department of Measurements and Robotic

Testing

• different incubation temperature

0 no effect

- + improved (less cond.)
- ++ very improved

Jerr Quel Univerza o Ljubijoni Fakulteta za elektrotekniko Katedra za enerjenja in robatiko

University of Ljubljana Faculty of Electrical Engineering Department of Measurements and Robotics

Testing

• *spacers* between individual PDs in a stack (no forced convection)

- 0 no effect
- + improved (less cond.)
- ++ very improved

Testing

- *isolation* between individual PDs in a stack
- better horizontal temperature gradients (condensation over smaller area)

effect: 0/+

0 no effect

- + improved (less cond.)
- ++ very improved

Univerza v Ljubljani Fakulteta za elektrotebnike Katedra za merienia in reb

University of Ljubljana Faculty of Electrical Engineering Department of Measurements and Robotics

Univerza v Ljubljani Fakulteta za elektrotebnik Katedra za unerienia in ro

University of Ljubijana Faculty of Electrical Engineering Departments of Measurements and Robotis

Testing

• whole stack cover isolation (as pictured + alu and plastic wrap)

- 0 no effect
- + improved (less cond.)
- ++ very improved

Univerza o Ljubljani Fakulteta za elektroteh Kasedra za merimis in

University of Ljubijana Faculty of Electrical Engineering Department of Measurements and Rabois

Testing

• separate Petri dishes

(stacks of different sizes)

effect: 0

0 no effect + improved (less cond.) ++ very improved

Univerza v Ljubljani Fakulteta za elektrotehnik Kasedra za enerienia in re

University of Ljubljana Faculty of Electrical Engineering Departments of Measurements and Robotic

Testing

• *spacing and isolation (shelving)* individual PDs in a stack

effect:

++

- 0 no effect
- + improved (less cond.)
- ++ very improved

Univerza v Ljubljavi Fakulteta za elektrotekniko Katedra za verienia in rekotil

University of Ljubijana Faculty of Electrical Engineering Department of Measurements and Robotics

Testing

• *spacing and isolation (shelving)* individual PDs in a stack

Univerza v Ljubljani Fakultota za elektrotebniko Kasedra za merjenja in rebstil

University of Ljubljana Faculty of Electrical Engineering Departments of Measurements and Robotic

Conclusions

- a special measurement setup was designed and used to confirm spatial gradients
- different tests were performed in order to minimize condensation some measures proved successful (+/++) – lowered risk in subsequent analysis
- limited number of tests (pharma, sterile environment, strict protocols, availability of premises,...)

Univerza v Ljubljoni Fakulteta za elektrotebnij Kasedra za merienje in re

University of Ljubljana Faculty of Electrical Engineering Departments of Measurements and Robotic

Potential follow-up

- more measurements in the sample preparation phase
- modelling of heat fluxes would be interesting (*some parameters like air flow, turbulances would be difficult to set*)