14IND11 HIT

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Humidity calibration equipment for food processing applications

S. Tabandeh, V. Fernicola INRIM Istituto Nazionale di Ricerca Metrologica, *Turin, Italy*

> <u>s.tabandeh@inrim.it</u> <u>v.fernicola@inrim.it</u>

Humidity measurements at high temperatures and under non-static conditions, PTB, Braunschweig, Germany 16 to 17 November 2017

Synopsis

- Background and motivations
- Industrial demand
- > Design criteria and working principle
- Experimental set-up
- Microwave hygrometry
- System optimization
- Uncertainty estimation
- Comparison and validation
- Conclusions

Humidity measurements at high temperatures and under non-static conditions, PTB, Braunschweig, Germany 16 to 17 November 2017

Background and motivations

- Drying is estimated to cost EU industry some 30 billion € per year in energy costs. Every 0.1 % improvement in drying efficiency due to better process control could save around 30 M€/year.
- Monitoring humidity at temperatures above 100 °C is a key factor in controlling drying processes.
- The **food industry** is the second largest manufacturing sector in the EU with a total manufacturing turnover of over 900 billion Euto.
- Drying and baking are key processes in the food industry and humidity control is a key parameter in controlling product quality.

Environment motivations

- The European Directive 2012/27/EU on **Energy Efficiency** and the identification of improving energy efficiency as one of the most effective way to reduce **greenhouse emissions** and other pollutants and thus to **mitigate climate change.**
- The reliability of humidity measurements directly affects the drying efficiency, and significant savings are expected by the outcomes of this project.
- The targeted improvements in energy efficiency through better humidity monitoring in drying processes would result in

Significant reduction in the **emissions**

Improvements in process control

Reduce **waste** material

Industrial demand

Although humidity measurements are carried out in many processes **significantly above 100** °C and humidity sensors are specified for such conditions, humidity **calibrations are usually not performed at temperatures above 100** °C and the calibration equipments available in the industry cannot be operated in this range.

Example of tunnel oven-drying and roasting: 45-50 minutes at **140** °C for a mild processing to ensure a good final quality in terms of residual water content (<1%), lipid oxidation and color. Alternatively, nuts are heated up to **180** °C for 20 minutes in fast drying process.

Humidity measurements at high temperatures and under non-static conditions, PTB, Braunschweig, Germany 16 to 17 November 2017

Design criteria

To support the **operating range of industrial dryers**, the generator :

- is based on controlled, SI-traceable, mixing of a water mass flow evaporated into a dry air mass flow
- air temperature up to 180 °C
- dew-point temperature up to 140 °C
- pressure up to 6 bar(abs)

 The vapor/steam generator should operate over a wide range of absolute humidity, from 25 g/m³ at atmospheric pressure to 1000 g/m³ at 6 bar(abs).

Working principle

Humidity measurements at high temperatures and under non-static conditions, PTB, Braunschweig, Germany 16 to 17 November 2017

Experimental set up I

XIII International Symposium on Temperature and Thermal Measurements in Industry and Science – Zakopane-2016

Experimental set up II

.

QSR hygrometry I

Humidity measurements at high temperatures and under non-static conditions, PTB, Braunschweig, Germany 16 to 17 November 2017

10

QSR hygrometry II

experimentally, to determine \mathcal{E}_{Mix} using a mw resonator resonance frequencies f(and half-widths g) are, for instance, measured at the same temperature T in vacuum and at pressure p

$$\varepsilon_{\rm mix} = \left(\frac{\langle f+g\rangle_0}{\langle f+g\rangle_p}\right)^2 = \left(\frac{\langle f+g\rangle_0}{\langle f+g\rangle_p \left(1-k_T p/3\right)}\right)^2$$

and the isothermal compressibility of the cavity k_T can be determined from measurements in He as a function of pressure

Pressure control

Initial design

Sensor and actuator were far from each other Stability of pressure is about **4 per thousand** P is source of 70% of the uncertainty Forming of droplets inside the cold trap is a source of instability Sensor and actuator are side by side -> no delay Stability of pressure is about **1 per thousand** Cascade control of pressure by using two different control units. Significant reduction of the uncertainty

revised design

Humidity measurements at high temperatures and under non-static conditions, PTB, Braunschweig, Germany 16 to 17 November 2017

Results I – response time

Humidity measurements at high temperatures and under non-static conditions, PTB, Braunschweig, Germany 16 to 17 November 2017

13

Uncertainty evaluation

the uncertainty in the independent knowledge of the polarizability of water (Debye constants) dominates

	Reference date	A	В
Groves and Sugden	1935	4.3 ± 1.2	(2.074±0.054)×104
Stranathan	1935	4.03 ± 0.39	$(2.071 \pm 0.014) \times 10^{4}$
Hurdes and Smyth	1942	3.4 ± 1.2	$(2.087 \pm 0.053) \times 10^{4}$
Essen and Froome	1951	3.585 ± 0.011	$(2.061 \pm 0.002) \times 10^4$
Birnbaum and Chatterjee	1952	3.84 ± 0.72	$(2.092 \pm 0.024) \times 10^{4}$
Essen	1953	4.157 ± 0.012	$(2.041 \pm 0.002) \times 10^{4}$
Boudouris	1958	3.99 ±0.60	$(2.081 \pm 0.020) \times 10^{4}$

Humidity measurements at high temperatures and under non-static conditions, PTB, Braunschweig, Germany 16 to 17 November 2017

QSR vs. CMH calculation

Humidity measurements at high temperatures and under non-static conditions, PTB, Braunschweig, Germany 16 to 17 November 2017

QSR vs. Mass flow calculation

Humidity measurements at high temperatures and under non-static conditions, PTB, Braunschweig, Germany 16 to 17 November 2017

Operating range

- The operating range is defined <u>above</u> the plot surface.
- Generator has been validated against traceable CMH and QSR hygrometers at 55 different points.
- Tests has been carried out with nitrogen and air.

	Min	Max
Temperature [°C]	60	161
Pressure [bar]	1.02	6.08
Specific Humidity [kg/kg]	0.07	0.646
Dew Point Temperature [°C]	38	142.44
Flow [l/m]	1	40

Validation over the operating orange

Humidity measurements at high temperatures and under non-static conditions, PTB, Braunschweig, Germany 16 to 17 November 2017

Conclusions

- A mass fraction humidity generator has been developed at INRIM to provide traceable calibrations of humidity sensors at temperatures above 100 °C.
- The principle of operation is based on mixing and evaporating a known mass of water into a known mass of dry air.
- The generator operates up to 180 °C, with dew point temperatures up to 140 °C and pressures up to 6 bar(abs).
- A gold-plated quasi-spherical microwave resonator (QRS) has been integrated with a mass fraction humidity generator developed at INRIM.
- The humidity generator has been thoroughly validated at 55 different operation conditions against CMH and QSR.

The EMPIR initiative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States