



### **Exercise 1:** Calibration of an

# Calibration of an RH transmitter in non-static conditions

- Calibration setup:
  - Mass flow controller based flow mixing
  - Capacitive reference sensor
  - Open measurement tube
  - Enable fast linear ramps at room temperature
  - Computer control & recording
- Measurements
  - Ascending and descending ramps
  - Study:
    - Difference between static vs. non-static
    - Effect of time response: ramp speed, filter
- Trainer: Richard Högström





# **Exercise 2:** Errors in non-ideal non-static conditions

- Experimental measurement setup:
  - Fan based flow mixing
  - Capacitive sensors
  - Non-ideal humidity control
  - Computer control & recording
- Measurements
  - Non-linear ramps, unstable humidity
  - Study:
    - Differences in sensor response at non-static conditions
- Independent work





### Early prototype field calibrator:

- Green main switch on front panel
- USB connection (front panel) to computer
- Separate power supply for the heater
  - Setting: 10 V

### Co

Or



| ntrol user interface:                     |          | Options for humidity calibration               | Options:<br>Manual fan power adjustment (this is<br>PID Control: Setpoint for humidity ca | s propably simplest option in most cases;<br>in be tried         | -1 ,<br>-1<br>Time                                            |
|-------------------------------------------|----------|------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|
| peration modes:                           | select   |                                                | Humidity ramp: "Linear" ramp for dy<br>Power of Humid fan                                 | namic measurements                                               |                                                               |
| <ul> <li>Manual fan power adju</li> </ul> | ustment- | In case of manual fan power adjustmen          | nt, control this: 0                                                                       |                                                                  |                                                               |
| PID control                               |          |                                                | Setpoint for Humidity (rh%)                                                               | PID gains                                                        | ſ                                                             |
| <ul> <li>Humidity ramp</li> </ul>         | adjust   | In case of PID Control, control these          | 0                                                                                         | integral time (Ti, min) 0.050<br>derivative time (Td, min) 0.000 | Typical values are approximately Kc = 0.15, Ti = 0.05, Td = 0 |
|                                           | adjust   | Star<br>n case of Humidity ramp, control these | ting power power increase per t                                                           | time [%/s]<br>Default is starting power 0                        | and power increase per time 0.1 [%/s]                         |
|                                           |          |                                                |                                                                                           |                                                                  |                                                               |

### Exercise 2:

Errors in non-ideal non-static conditions



- 1. Start with "dry" (which is actually not very dry but driest possible at the moment):
  - 1. Choose Manual fan power adjustment
  - 2. Set Power of Humid fan to 0
- 2. Generate step change by setting Set Power of Humid fan to 100
  - 1. After 5 min time of stabilation Set Power of Humid fan back to 0
  - 2. Let the system stabilise 5 min

How was the step change? How responses of the sensors differed from each other?

- 3. Generate a ramp choosing Humidity ramp
  - 1. Set starting power = 1 and power increase per time = 0.1 [%/s]
  - 2. With these settings, the humidity ramp should take around 15 minutes

The generated ramp is not fully linear:

How this affects to the sensors and the difference between the sensor readings?

- 4. If you have time, you may try with PID control:
  - 1. Choose PID control
  - 2. Set control parameters: Setpoint for Humidity is 40%, Kc = 0.2, Ti=0.1 and Td = 0

What you can see and how the sensors behave?

5. End the exercise by choosing Manual fan power adjustment and setting Power of Humid fan to 0





# **Exercise 3**:

### **Time dependent factors in humidity measurements**

- Experimental measurement setup:
  - Flow switch to generate step changes
  - Tubing with different volumes
  - Old capacitive humidity sensors
- Measurements
  - Step changes at inlet
  - Visual monitoring of sensor readings
  - Study:
    - Effect of different tubings
    - Differences between sensors
- Independent work

Time dependent factors in humidity measurements



### Dry/wet air source:

Switching valve: (In this picture switched to wet)

# Measurement chamber:

Insert a DUC probe partly to the chamber through hole in the rubber flange.

# Humidity sensors to be studied:

- Vaisala HMP 233
- Rotronic HygroClip

# For studying the effect of volume:

- Two PTFE tubes
- Extension chamber:



• ٠ Reference to ambient probe Switch from dry to wet and back (connected using the switching valve of the to Testo 650) dry/wet air source system chamber inlet

to the chamber inlet

Connect a PTFE tube from the source to the chamber inlet. Tighten the swagelok connector by hand.

#### Exercise 3:

Time dependent factors in humidity measurements



#### 1. Different sensors

- 1. Setup the system using single PTFE tube between the source and the chamber
- 2. With a HMP 233 sensor:
  - 1. Set switch valve to DRY and let the hygrometers stabilise
  - 2. Set switch valve to WET and observe changes in the displays of HMP233 and Testo 650 How do they react to the change? Are there differences between the hygrometers?
  - 3. Compare your findings when switching the valve back to DRY
- 3. Repeat the task with a Rotronic sensor

#### 2. Different volume

- 1. Extend the tube by connected the another PTFE tube between the first tube outlet and the chamber inlet
  - 1. Set switch valve to DRY and let the hygrometers stabilise
  - 2. Set switch value to WET and observe changes in the displays How do they react to the change compared to the tests with a single tube?
  - 3. Compare your findings when switching the valve back to DRY
- 2. Extend the volume further by connecting the extension chamber between the two PTFE tubes
  - 1. Repeat the measurements and compare to the earlier tests
- 3. You may also repeat these tests with another hygrometer





# **Exercise 4**:

## Analysing results and estimating uncertainty

- Excel template to be completed
  - Incl. all needed input data
  - Incl. correlation
  - Incl. time dependent contributions
- To be done:
  - Identify uncertainty components
  - Estimate the uncertainty of the components
- The excel file "Exercise4 v2 MasterTemplate.xlsx" is on the memory stick of your group
  - The file is protected; please save your file on the memory stick
- Independent work:
  - please follow instructions on the file
  - Input data are also available on paper copies