

DANISH TECHNOLOGICAL INSTITUTE

## it's all about innovation





DANISH TECHNOLOGICAL INSTITUTE

# Progress towards traceable inline measurement of water activity

Henrik Kjeldsen, Jan Nielsen, Peter Friis Østergaard



#### Definition – Water activity

#### Moisture content: water content in a sample Water activity: is how easy it is to remove the water

- The water activity (a<sub>w</sub>) is a measure of how much "free" water there is available for chemical reactions and growth of microorganisms such as bacteria and fungi.
  - Every microorganism has a water activity level below which it cannot grow
  - There are no such direct correlations to the moisture content
- Food- and feed designers use the water activity to control the shelf-life or texture of their products.
- Sorption isotherms links moisture and water activity
  - Part of the HIT project







#### Determination of water activity

#### **>**

DANISH TECHNOLOGICAL INSTITUTE

#### In equilibrium

water activity = relative humidity over the sample

$$a_w = \frac{p}{p_0} = RH$$

Examples

• 
$$a_w = 0 \rightarrow$$
 "bone dry"

- $a_w = 100\% \rightarrow$  "pure water"
- *a<sub>w</sub>* can be determined indirectly by measuring the relative humidity (*RH*) above a sample in a temperature stabilised sealed chamber by means of a chilled mirror hygrometer or a relative humidity sensor.
- Depending on the material, the time to reach equilibrium can be very long...



### Sampling $\rightarrow$

 Automatic sampling for measurement of water activity

## Challenges

- Measurements are **slow**
- Samples are warm
- The volume of the measurement chamber in commercially available analysers is often very small





DANISH TECHNOLOGICAL INSTITUTE

www.meyer.ca

## Moisture



DANISH TECHNOLOGICAL INSTITUTE

On DRY basis

 $\frac{\textit{Mass of water}}{\textit{Mass of dry sample}} \cdot 100\%$ 

On WET basis

 $\frac{\textit{Mass of water}}{\textit{Mass of wet sample}} \cdot 100\%$ 

# Project goal: Sorption isotherm, 25 – 50 °C ≥





#### Process of convective drying

- A→B: Getting into equillibrium with air humidity (typically surface water)
- B→C: Drying is governed by external conditions (surface is still wet): heat-transfer to the surface of the sample and mass transfer of water from the surface to the ambient media (associated with the term "free water").
- C→E: Drying is governed by internal transport conditions in the product: internal moisture transfer and heat-conduction, leading to decreasing evaporation rate
- When we sample from the production line we do not know the water content, if there is free water on the surface or if the evaporation rate is governed by moisture mass transfer inside the product.



DANISH

TECHNOLOGICAL INSTITUTE

#### Ref 3

## Sketch of setup



DANISH TECHNOLOGICAL INSTITUTE

• NB: Traceable measurements

#### **Dew Point Generator**







#### Þ

DANISH TECHNOLOGICAL INSTITUTE

## Challenge 1: Load cell in oven

- Mass of chamber: 5000 g
- Target uncertainty:  $\pm 1 \text{ g} (k = 2)$







## Samples so far

(Milk powder, clots at high temperature)

- 1. Hazelnuts (~300 g)
- 2. Dog food (500 g)







DANISH TECHNOLOGICAL INSTITUTE



# Data for ground Hazelnuts



INSTITUTE



- Preliminary data
- Temperature effect
  - Small 40 60 °C
- Data for 26 °C deviates
  - Hysteresis ?
  - Not in equilibrium ?

# Challenge 2: Slow rate



**INSTITUTE** 

Equilibrium

 $a_w = RH$ 

- Example ( $\rightarrow$  figure)
  - Weight (g) vs. Time (h)
  - T = 60 °C
  - Humidity change < 1.5%
  - 40 hours
  - $\rightarrow$  one point in sorption isotherm



Sample: Ground hazelnuts (300 g)

## Challenge 2: Slow rate (cont.) Solution 1: Intelligent sequencing

DANISH TECHNOLOGICAL INSTITUTE





## Solution 3: Small sample



DANISH TECHNOLOGICAL INSTITUTE

Large samples required for representative sampling in food and feed production





## Measuring procedure



DANISH TECHNOLOGICAL INSTITUTE



Adjusting:  $RH = a_w$  (equilibrium  $\rightarrow$  constant Weight)

# Sample: Dog Food - Senior





# Curve fitting





# Outline



- Method: Recirculation (50 °C)
  - Speed
  - Accuracy
  - Samples from process industry

- Investigations
  - Dynamics (time dependence)
  - Production samples



## Conclusion



DANISH TECHNOLOGICAL INSTITUTE

- New setup for measuring sorption isotherms
  - Temperature: < 85 °C</li>
- Sample size: 300 1000 g
  - Allows for representative sampling at food / feed production
- Traceable through method and calibration of sensors
- Uncertainty ( $k = 2 \rightarrow 95\%$  confidence)
  - Weight: ±1 g
  - Moisture: ±0.25% @ 10% (for sample ~ 500 g)
  - Water activity: better than  $\pm 1\%$  @  $a_w = 80\%$

# Next step

Inline sampling at production line

## References



- Ref 1: Bell, L.N., and Labuza, T.P.: "Practical Aspects of Moisture Sorption Isotherm Measurement and Use". 2nd Edition AACC Eagan Press, Eagan, MN 2000
- Ref 2: Tietke, H. W.: "Studien zu den Möglichkeiten der Senkung von Warenverlusten an feuchteempfindlichen Lebensmitteln unter besonderer Berücksichtigung des Sorptionsverhaltens hygroskopischer Lebensmittel und des notwendigen Verpackungseinsatzes" [Studies into the possible methods for reducing cargo losses in moisture-sensitive foodstuffs with particular reference to the sorption behavior of hygroscopic foodstuffs and the necessary use of packaging], Thesis, Karl-Marx-Univ., Leipzig 1967
- Ref 3: Mujumdar, A. S.: "Handbook of Industrial Drying" 2<sup>nd</sup> Edition, CRC Press 2014